
Am. J. Hum. Genet. 65:1733–1740, 1999

1733

An Optimal Algorithm for Automatic Genotype Elimination
Jeffrey R. O’Connell1,2 and Daniel E. Weeks1

1Department of Human Genetics, University of Pittsburgh, Pittsburgh, and 2The Wellcome Trust Centre for Human Genetics, University of
Oxford, Windmill Road, Oxford

Summary

In an effort to accelerate likelihood computations on
pedigrees, Lange and Goradia defined a genotype-elim-
ination algorithm that aims to identify those genotypes
that need not be considered during the likelihood com-
putation. For pedigrees without loops, they showed that
their algorithm was optimal, in the sense that it identified
all genotypes that lead to a Mendelian inconsistency.
Their algorithm, however, is not optimal for pedigrees
with loops, which continue to pose daunting compu-
tational challenges. We present here a simple extension
of the Lange-Goradia algorithm that we prove is optimal
on pedigrees with loops, and we give examples of how
our new algorithm can be used to detect genotyping
errors. We also introduce a more efficient and faster
algorithm for carrying out the fundamental step in the
Lange-Goradia algorithm—namely, genotype elimina-
tion within a nuclear family. Finally, we improve a com-
mon algorithm for computing the likelihood of a pedi-
gree with multiple loops. This algorithm breaks each
loop by duplicating a person in that loop and then car-
rying out a separate likelihood calculation for each vec-
tor of possible genotypes of the loop breakers. This al-
gorithm, however, does unnecessary computations when
the loop-breaker vector is inconsistent. In this paper we
present a new recursive loop breaker–elimination al-
gorithm that solves this problem and illustrate its effec-
tiveness on a pedigree with six loops.

Introduction

Many pedigree-based statistics in the area of linkage and
segregation analysis are based on computing the likeli-
hoods of pedigree data. These likelihoods often can be

Received June 7, 1999; accepted for publication September 22,
1999; electronically published November 2, 1999.

Address for correspondence and reprints: Dr. Jeff O’Connell, Uni-
versity of Pittsburgh, Department of Human Genetics, Crabtree Hall
A310, 130 DeSoto Street, Pittsburgh, PA 15261. E-mail: jeff@watson
.hgen.pitt.edu

� 1999 by The American Society of Human Genetics. All rights reserved.
0002-9297/1999/6506-0030$02.00

quite difficult to compute, since (a) the computation in-
volves summation over every possible underlying com-
bination of multilocus genotypes that is consistent with
the observed phenotypic information and (b) the com-
putational time of likelihood calculation grows expo-
nentially with the number of genotypes. In an effort to
accelerate likelihood computations, Lange and Goradia
(1987) defined a genotype-elimination algorithm that
aims, on a locus-by-locus basis, to identify those geno-
types that are not consistent with the observed pheno-
type information in the pedigree and that, because they
contribute no information, therefore can be eliminated
from the likelihood computation. Although the Lange-
Goradia algorithm is in common use today and is quite
effective in speeding up likelihood computations, it is
not optimal for those pedigrees which continue to pose
daunting computational challenges—namely, pedigrees
with loops in them. We propose here a simple extension
of the Lange-Goradia algorithm that we prove is optimal
for pedigrees with loops, and we give an example of its
use in detection of genotyping errors. We also introduce
a more efficient method for performing genotype elim-
ination within a nuclear family, the fundamental oper-
ation in genotype elimination for the entire pedigree.
Finally, we introduce a recursive genotype-elimination
algorithm to determine all consistent loop-breaker vec-
tors in a pedigree with loops.

An Optimal Genotype-Elimination Algorithm

We first define some necessary terms. A pedigree may
be represented as a directed graph, with two types of
vertices: person vertices and mating vertices. The arcs of
such a graph fall into two classes: mating arcs, which
connect two parents to a mating, and descent arcs, which
connect a mating to the children produced by that mat-
ing. Note that each arc always contains a mating vertex
and a person vertex. For example, in figure 1, the arc
from person 1 to mating vertex M1 is a mating arc,
whereas the arc from M1 to person 4 is a descent arc.
A loop is a sequence of arcs that starts and ends in the
same vertex; note that although the definition of a loop
ignores the directionality of the arcs, an arc may appear
only once in a given loop. In figure 1, the loop consists
of the arcs M1-3, 3-M2, M2-4, and 4-M1. We restrict
our consideration to pedigrees that are graphically con-

1734 Am. J. Hum. Genet. 65:1733–1740, 1999

Figure 1 A, Pedigree (from Sobel et al. 1995) that has a loop
(indicated by the thicker lines), since parents 3 and 4 are siblings. B,
Broken pedigree. To break the loop using person 3, we would duplicate
her and assign her duplicate, person 8, the mating arc that formerly
went from person 3 to the mating vertex M2.

nected—that is, in which every person vertex can be
reached (ignoring directionality), by some sequence of
distinct arcs, from any other person vertex.

Likelihood computations on a pedigree with loops are
often facilitated by “breaking the loops” via the judi-
cious selection of loop breakers (Lange and Elston
1975). One breaks a loop by selecting a person in the
loop, detaching all mating arcs from him or her, and
reattaching them to a new dummy individual, the loop
breaker, who, during the computation of the likelihood,
is constrained to always have the same genotype as the
original person. A loop-breaker vector is a vector con-
taining one genotype for each loop breaker. When com-
puting the overall likelihood of the pedigree, we must
compute the likelihood for each possible loop-breaker
vector and then sum these results to obtain the total
likelihood. We say that a loop-breaker vector is incon-
sistent if its genotypes and the observed phenotypes of
the rest of the pedigree are mutually impossible under
Mendelian laws of inheritance but is consistent other-
wise. In figure 1, there are two choices for a loop breaker:
individuals 3 and 4. Because of symmetry, either loop
breaker will have four loop-breaker vectors: (1F2),
(2F1), (3F2), and (2F3), where 1F2 represents the ordered
genotype with maternal allele 1 and paternal allele 2,
etc. With this loop-breaker approach, a connected ped-

igree with loops can always be broken to form a new
connected pedigree without loops, provided that we per-
mit a person to break more than one loop at a time.
(This result follows from a basic theorem, from graph
theory, that states that every connected graph has a span-
ning tree, which is connected and has no loops. A span-
ning tree may be found by repeatedly choosing a loop
and removing one of its arcs until there are no loops
left. The person vertex of each arc that has been removed
represents a loop breaker.) Note that, although the num-
ber of loops in a pedigree is an invariant of the pedigree,
when we permit a person to break more than one loop,
the number of loop breakers need not be an invariant.
Becker et al. (1998) discuss how to choose loop breakers
efficiently to minimize the number of loop-breaker vec-
tors required by the linkage-analysis program FAS-
TLINK (Lathrop and Lalouel 1988; Cottingham et al.
1993).

Given a connected pedigree with n persons, a genotype
vector (G1, G2,), Gn), where Gi is the genotype of the
ith person, is compatible if it is consistent with the ob-
served phenotypes of the pedigree members. (Note that,
for codominant markers, the observed phenotype is sim-
ply the observed genotype.) Genotype-elimination al-
gorithms typically aim to construct, for each person, a
minimal genotype list that contains only genotypes that
are the members of at least one compatible genotype
vector. If a certain genotype is never a member of any
compatible genotype vector, then it is superfluous. If the
genotype-elimination algorithm is optimal, then it elim-
inates every superfluous genotype from each person’s
genotype list.

Lange and Goradia (1987) proposed an improved ge-
notype-elimination algorithm based on a previous al-
gorithm developed by Lange and Boehnke (1983). They
proved that their new algorithm was guaranteed to elim-
inate all superfluous genotypes on any connected pedi-
gree without loops. However, they showed by counter-
example that their algorithm was not optimal, because
it could fail to eliminate all superfluous genotypes from
pedigrees with loops. As Lange and Goradia (1987) did,
we restrict our attention to genotype elimination at a
single locus at a time. Note that genotype elimination
can be used in a multilocus context to eliminate both
superfluous genotypes and superfluous phases, as dis-
cussed by Lange and Weeks (1989). Since our optimal
algorithm is based on the Lange-Goradia algorithm, we
repeat that algorithm verbatim from the original pub-
lication (Lange and Goradia 1987).

The Lange-Goradia Genotype-Elimination Algorithm

A. For each pedigree member, list only those genotypes
compatible with his or her phenotype.

O’Connell and Weeks: Optimal Genotype-Elimination Algorithm 1735

Table 1

Ordered Genotype Lists for the Pedigree in Figure 1

PERSON

GENOTYPE LISTa

After Lange-Goradia Algorithm After Optimal Algorithm

1 {1F1, 2F1, 3F1, 1F2, 2F2, 3F2, 1F3, 2F3, 3F3} {2F1, 3F1, 1F2, 2F2, 3F2, 1F3, 2F3}
2 {1F1, 2F1, 3F1, 1F2, 2F2, 3F2, 1F3, 2F3, 3F3} {2F1, 3F1, 1F2, 2F2, 3F2, 1F3, 2F3}
3 {2F1, 1F2, 3F2, 2F3} {2F1, 1F2, 3F2, 2F3}
4 {2F1, 1F2, 3F2, 2F3} {2F1, 1F2, 3F2, 2F3}
5 {2F2} {2F2}
6 {2F1, 1F2} {2F1, 1F2}
7 {3F2, 2F3} {3F2, 2F3}

a Superfluous genotypes are indicated in bold. An ordered genotype has the maternal allele listed first, whereas
an unordered genotype does not distinguish maternal or paternal origin. For example, if we were using unordered
genotypes, person 6 would have the genotype list {1/2}.

B. For each nuclear family:

1. Consider each mother-father genotype pair.

a. Determine which zygote genotypes can result.

b. If each child in the nuclear family has one or
more of these zygote genotypes among his cur-
rent list of genotypes, then save the parental
genotypes. Also save any child genotype
matching one of the created zygote genotypes.

c. If any child has none of these zygote genotypes
among his current list of genotypes—that is, if
he is incompatible with the current parental
pair of genotypes—take no action to save any
genotypes.

2. For each person in the nuclear family, exclude
any genotypes not saved during step 1 above.

C. Repeat part B until no more genotypes can be
excluded.

We now extend the Lange-Goradia algorithm to be
optimal in the presence of loops, by using loop-breaker
vectors to transform the genotype-elimination problem
into a collection of problems involving loopless pedi-
grees. Schäffer (1996) uses the technique of loop-breaker
vectors to eliminate inconsistent loop-breaker vectors in
FASTLINK (Cottingham et al. 1993), but he does not
explicitly use the Lange-Goradia algorithm for genotype
elimination, nor does he address optimality.

Our Optimal Genotype-Elimination Algorithm

A. Do conventional genotype elimination on the ped-
igree (without breaking the loops) to reduce the
size of each person’s genotype list.

B. Break the loops and construct the set of loop-
breaker vectors. For each loop-breaker vector, as-
sign the loop breakers their respective genotypes

from the vector and carry out genotype elimination
on the broken pedigree structure. If the loop-
breaker vector is consistent, then retain the gen-
otypes for each person remaining after elimination.

C. For each person, construct his or her final genotype
list by taking the union of the retained genotype
lists.

Theorem: The algorithm above eliminates all super-
fluous genotypes.

Proof: In step B, after breaking the loops, we now
have a connected pedigree without loops. Thus, after
genotype elimination, if the loop-breaker vector is con-
sistent, the pedigree is guaranteed to contain no super-
fluous genotypes, as proved by Lange and Goradia
(1987). Taking the union (step C) of sets containing no
superfluous genotypes will not introduce any new su-
perfluous genotypes, so the final union contains no su-
perfluous genotypes.

Illustration

Sobel et al. (1995) used the inbred pedigree in figure
1 to illustrate the failure of the Lange-Goradia genotype-
elimination algorithm to eliminate all superfluous geno-
types. As they point out, the Lange-Goradia algorithm
fails to eliminate the superfluous genotypes 1/1 and 3/3
from the genotype lists for persons 1 and 2 (table 1). It
fails because it does not take into account the symmetry
condition that, whenever person 3 has the unordered
genotype 1/2, person 4 must simultaneously have the
unordered genotype 2/3, or vice versa. However, this
symmetry is captured by our optimal algorithm, since
the algorithm steps through each of the possible two
genotypes (1/2 and 2/3) for person 3 (and her duplicate
8 in fig. 1B). When persons 3 and 8 are simultaneously
assigned the genotype 1/2, then genotype elimination on
the loopless pedigree in figure 1B will eliminate geno-
types 1/2 and 2/1 from person 4’s genotype list, thus

1736 Am. J. Hum. Genet. 65:1733–1740, 1999

capturing the symmetry. Similarly, for person 3’s second
loop-breaker vector containing 2/3, the genotypes 2/3
and 3/2 are eliminated from person 4’s genotype list.
Thus, our optimal genotype-elimination algorithm is
successful (as expected) in eliminating genotypes 1/1
and 3/3 from the genotype lists for persons 1 and 2 (table
1).

Complexity of the Algorithms

Two important aspects of any algorithm are its time
complexity and its space complexity. To determine the
space complexity of the Lange-Goradia and our geno-
type-elimination algorithm for a given locus, let I be the
number of individuals in the pedigree and let N be the
number of alleles at the locus. Then the space complexity
is bounded by I*N*N, where N*N represents the max-
imum number of ordered genotypes of any untyped in-
dividual. In general, storage space is not a problem. To
determine the time complexity of our algorithm, first let
the time complexity of the loopless Lange-Goradia al-
gorithm be T. Then, since our algorithm proceeds by
constructing the set of loop-breaker vectors from all pos-
sible combinations of genotypes taken from the genotype
lists of the loop breakers after Lange-Goradia genotype
elimination, we see that our algorithm is multiplicative
in the number of loop breakers, say L. So the total time
complexity is bounded by L*T. For example, if we had
a pedigree with two loop breakers, and if their genotype
lists contained 10 and 20 genotypes after Lange-Goradia
elimination, then we would have to consider 200 loop-
breaker vectors. Obviously, as the number of loop brea-
kers increases, the number of loop-breaker vectors may
increase dramatically. There are two ways in which we
can speed up our algorithm: speeding up the original
Lange-Goradia algorithm and decreasing the number of
loop breakers.

Sequential Genotype Elimination

For each nuclear family, the Lange-Goradia algorithm
considers all mother-father genotypes and determines
whether these two genotypes and the genotypes of any
children are to be saved. This requires on the order of
M*F*A parent-child genotype checks, where M and F
are the number of genotypes of the mother and father,
respectively, and A is the sum of the number of genotypes
of all the children. This method of checking, however,
may produce many redundant checks, because, for ex-
ample, a single parent genotype may be saved as part
of checking many mother-father genotype pairs, even if
it has already been saved from a previous check. A
method of avoiding this redundancy is checking each
individual in the nuclear family separately, to determine
whether that person’s genotypes are either compatible
with the genotypes of the other individuals, and thus

saved, or incompatible, and thus not saved. In addition,
for each genotype of that individual that is saved, we
also save the genotypes of the other individuals in the
nuclear family that were found to be compatible during
this particular check. For example, we start by marking
all genotypes in the nuclear family as not saved, and
then we consider the first individual, say, the mother.
Given her genotype Gm, we check whether Gm is com-
patible with the father and children, by searching for
the first possible configuration of the father and children
that is compatible with Gm. If such a configuration is
found, we save each genotype in the configuration; oth-
erwise, we delete Gm from the mother’s genotype list.
Note that we can save genotypes of each person in the
nuclear family as soon as we know that they are mu-
tually compatible, but we can delete genotypes from one
specific person only after checking all possibilities. To
increase the chance of finding a different father-children
genotype configuration to save when checking the next
genotype of the mother, we use a shifting technique, as
follows. When we save a genotype, we shift it to the end
of the person’s genotype list, thereby ensuring that we
always consider as-yet-unsaved genotypes before al-
ready-saved ones. Ideally, if the mother has n saved gen-
otypes, we will also save n different father-children ge-
notype configurations. After checking the mother, we
check the father. But now, instead of having to check
every genotype of the father, we only need to check those
genotypes that are still not saved. We proceed in the
same way, looking for the first mother-children config-
uration, if it exists, and, if it does, saving the genotypes
of the children (the mother’s genotypes do not need to
be saved again). This procedure continues until each
individual in the family has been checked. We outline
this algorithm in more detail below. Since it requires
more checks to determine whether we do not save a
genotype than whether we do save it, we also add a
useful preprocessing step that does a parent-child check
with only two individuals at a time (instead of both
parents and all children) when either the child or parent
is typed. For example, if a child is typed 3/4, and the
mother is untyped, we can eliminate all of the mother’s
genotypes that have neither the 3 nor the 4 allele, re-
gardless of the genotypic information of the father and
the other children.

The Sequential Genotype-Elimination Algorithm

A. For each pedigree member, list only those genotypes
compatible with his or her phenotype.

B. For each nuclear family:

1. For each parent, determine whether an untyped
parent is compatible with any typed children sep-
arately. For each untyped child, determine

O’Connell and Weeks: Optimal Genotype-Elimination Algorithm 1737

Figure 2 Human pedigree from Saudi Arabia, with six loops
(Jones et al. 1998). Two of these loops are indicated, by the dashed
and dotted lines. The following output from the LOOPS program
(Xie and Ott 1992) indicates the sequence of individuals and mar-
riage nodes (in parentheses) that make up the loop. Loop 1, 7-
(7,8)-19-(19,26)-26-(20,21)-21-(18,9)-9-(3,4)-7; Loop 2, 7-(7,8)-
19-(19,26)-26-(20,21)-21-(9,18)-18-(13,12)-12-(3,4)-7; Loop 3,
3-(3,4)-7-(7,8)-19-(19,26)-26-(20,21)-21-(9,18)-18-(12,13)-13-
(6,5)-5-(1,2)-3; Loop 4, 7-(7,8)-19-(19,26)-26-(20,21)-21-(9,18)-
18-(12,13)-16-(16,15)-15-(10,11)-11-(3,4)-7; Loop 5, 16-(16,15)-
15-(10,11)-14-(14,17)-17-(12,13)-16; and Loop 6, 18-(12,13)-
16-(16,15)-15-(10,11)-14-(14,17)-23-(23,22)-22-(9,18)-18. Our
set of loop breakers is indicated by the blackened symbols, whereas
the gray symbols indicate the set of loop breakers selected by the
algorithm of Becker et al. (1998).

whether the child is compatible with each typed
parent separately. Delete any incompatible
genotypes.

2. Mark all genotypes of the nuclear family as
unsaved.

3. For each genotype of the mother:

a. Form a mother-father genotype pair, using the
next genotype in the genotype list of the father.

b. Determine which zygote genotypes can result.

c. If each child has at least one of these zygote
genotypes among its list of genotypes, save the
mother, father, and children genotypes and, for
each individual, move the newly marked saved
genotypes to the end of its respective genotype
list.

d. If any child has none of the zygote genotypes
among its current list of genotypes, repeat step
a.

4. Delete any of the mother’s genotypes not marked
saved.

5. Repeat part c, switching the roles of the mother
and father but checking only the genotypes of
the father that are still marked unsaved.

6. For each child:

a. For each genotype marked unsaved, determine
the mother-father genotype pair compatible
with that genotype.

b. Determine if any mother-father genotype pair
formed in step 6.a. is compatible with the other
children. If so, save the genotypes of the chil-
dren. If not, delete the unsaved genotype from
the child’s genotype list.

C. Repeat part B until no more genotypes can be
excluded.

Whereas the original Lange-Goradia algorithm always
has order M*F*A checks, the best case for our sequential
algorithm would be that, after checking the mother, we
would not have to check the father and children, thus
reducing the number of checks from order M*F*A to
order M*(F�A). The efficiency of this algorithm in-
creases as more incompatible genotypes are deleted from
the pedigree during each round of genotype elimination.

Recursive Genotype Elimination

We can also speed up our algorithm by applying sim-
ilar ideas in order to avoid redundant checking of in-
consistent loop-breaker vectors. As we saw above, the

number of loop-breaker vectors is multiplicative in the
number of loops and can grow very quickly. For ex-
ample, the pedigree in figure 2 has six loops (one choice
of loop breakers—22, 26, 15, 14, 12, and 9—is desig-
nated by the solid individuals) and 409,600 loop-breaker
vectors at the given marker. Performing genotype elim-
ination 409,600 times for each loop-breaker vector took

1738 Am. J. Hum. Genet. 65:1733–1740, 1999

320 min on our SUN Enterprise with a 300-MHz pro-
cessor. The number of loop-breaker vectors for this ped-
igree, however, can be reduced, by a factor of 8.3, to
49,152, by use of set-recoded genotypes introduced by
O’Connell and Weeks (1995), and the time reduced, by
a factor of 17.7, to 18 minutes. (The set-recoding also
reduces the genotype lists of other untyped individuals
who are not loop breakers, which accounts for the speed-
up 18.3.) However, of these 49,152 loop-breaker vec-
tors, 14,270 vectors are consistent and 34,882 incon-
sistent with the pedigree data. We can avoid checking
these 34,882 inconsistent loop-breaker vectors by re-
cursively fixing each component of the vector and using
conventional genotype elimination to reduce the geno-
type lists of the remaining loop breakers. For example,
in figure 2 loop breaker 22 has two ordered genotypes:
4F3 and 3F4. After genotype elimination, person 9 (per-
son 22’s father) has eight genotypes, each containing
either the 3 or the 4 allele. If we perform genotype elim-
ination by using just the genotype 4F3 for person 22,
the number of loop-breaker vectors is 15,360, and, if
we use just the genotype 3F4, the number of loop-
breaker vectors is also 15,360. Thus, if we perform ge-
notype elimination twice, using each genotype once, the
total number of loop-breaker vectors is reduced from
49,152 to 30,720. The reason for the reduction is that,
when individual 22 is assigned the ordered genotype
4F3, all of individual 9’s genotypes must have at least
one 3 allele, thus reducing from eight to five the number
of consistent genotypes that individual 9 has. In other
words, we have avoided checking all the inconsistent
loop-breaker vectors containing 4F3 for individual 22
and any one of those three inconsistent genotypes for
individual 9, without having to consider which geno-
types the remaining four loop breakers have. Now con-
sider the next loop breaker, individual 26, who also has
two possible genotypes: 3F4 and 4F3. By performing
genotype elimination four times, once for each choice of
genotypes for loop breakers 22 and 26, the number of
loop-breaker vectors is further reduced, to 24,576. We
can reduce this number further still, to 14,270 (thus
avoiding all inconsistent loop-breaker vectors) by con-
tinuing in this manner with the remaining four loop
breakers. The time required to perform the full recursive
loop-breaker elimination was 90 s. We now present the
algorithm:

Recursive Loop-Breaker Elimination Algorithm

Let N be number of loop breakers and let LK be the
genotype list of loop breaker K. Then the recursive pro-
cedure is:

Elimination (N, LN)

A. If N = 0, return.

B. While LN is not empty:

1. Choose G in LN and fix loop breaker N.

2. Perform conventional Lange-Goradia elimination
to find LN�1.

3. Elimination (N�1, LN�1).

4. Remove G from LN.

We also applied the automatic loop-breaker selection
software developed by Becker et al. to the pedigree in
figure 2, to determine how the number of consistent
loop-breaker vectors would change with this choice of
loop breakers (marked by solid gray symbols). It is in-
teresting to note that, although this choice of loop brea-
kers still has the same number of loop-breaker vectors
(using set-recoded genotypes) as the original pedigree
after the initial genotype elimination (49,152), the num-
ber of consistent loop-breaker vectors is reduced from
14,270 to 2,240. This more-than-sixfold reduction is
due to the fact that these loop breakers are more closely
related than the others (three of them are siblings, a
fourth one is their father, and a fifth one is a daughter),
so that the ordered genotypes in the recursion reduce
the genotype lists of the remaining loop breakers even
further than before.

Detecting Genotyping Errors

In practical applications, genotype elimination can
also be useful for detection of genotype errors prior to
likelihood computation (with programs such as Ped-
Check [O’Connell and Weeks 1998]). Detection of
someone typed with a superfluous genotype is, however,
a different issue from elimination of superfluous geno-
types from the genotype list of an untyped individual;
the first has to do with efficient detection of errors,
whereas the second has to do with efficient likelihood
computations. Thus we were interested in exploring
whether the conventional Lange-Goradia genotype-elim-
ination algorithm would suffice to detect anyone typed
with only a superfluous genotype on a pedigree with
loops and thereby identify that the pedigree had a Men-
delian inconsistency. If so, then we could conclude that
the pedigree is inconsistent, without having to deal with
the multiplicative increase in computing required when
dealing with loop-breaker vectors. For our pedigree in
figure 1, with the single loop formed by the sibling mat-
ing, if we type either grandparent with either superfluous
genotype 1/1 or 3/3, the conventional Lange-Goradia
algorithm will detect the error. Unfortunately, we have
found a counterexample, displayed in figure 3, with a
single loop arising from a first-cousin mating where con-
ventional Lange-Goradia genotype-elimination fails to

O’Connell and Weeks: Optimal Genotype-Elimination Algorithm 1739

Figure 3 Pedigree with one loop that illustrates that Lange-Gor-
adia genotype elimination alone is not able to detect that the pedigree
is not consistent with the laws of Mendelian inheritance.

Table 2

Ordered Genotype Lists after Lange-Goradia
Genotype Elimination Is Applied to the
Pedigree in Figure 3

Person Genotype List

1 {2F2}
2 {2F1, 1F2, 3F2, 2F3}
3 {2F2}
4 {2F1, 2F3}
5 {2F1, 2F3}
6 {2F2}
7 {2F2}
8 {2F1, 2F3}
9 {1F2, 3F2}
10 {2F2}
11 {2F1, 1F2}
12 {3F2, 2F3}

detect that each of the seven typed individuals has a
superfluous genotype (table 2). For example, the geno-
type 2/2 in individual 1 is superfluous, because the ge-
notype forces individual 2 to have three distinct alleles.
This inconsistency arises because the known genotypes
of the rest of the pedigree imply the following allele flow
through the mating vertex M1 to individual 2: alleles 1
and 3 from individuals 4 and 5 combined and allele 2
from individual 3. Thus, determining whether a pedigree
is consistent with the laws of Mendelian inheritance re-
quires the use of our new algorithm. In addition to de-
termining whether a pedigree is consistent with the laws
of Mendelian inheritance, PedCheck also uses our new
algorithm to help identify possible sources of genotype
error, by determining which genotyped individuals
would eliminate the inconsistency if their genotype in-
formation were actually missing (called “critical geno-
types”) and then computing a likelihood-based odds for
each possible alternative genotype that the individual
could have. In figure 3, PedCheck determined that, of
the seven typed individuals, only individual 10 does not
have a critical genotype and that either individual 11 or
12 is the most likely source of the error. The reason is
that, in the original genotype data, seven of the eight
founder alleles are 2, and, for this pedigree, the likeli-
hood (when equifrequent alleles are used) is greater
when there is only one other allele besides the 2 (the

case when individual 11 or 12 has the critical genotype)
than when there are two other distinct alleles (as is the
case when individual 1, 3, 6, or 7 has the critical geno-
type).

Discussion

We have presented here a genotype-elimination al-
gorithm that is guaranteed to eliminate all superfluous
genotypes in all types of pedigrees, including those with
loops. Although this should help in accelerating the com-
putations of likelihoods in pedigrees with loops, com-
putations in pedigrees with more than a few loops will
continue to remain challenging.

We have discussed the computational complexity of
the Lange-Goradia algorithm and have presented a more
efficient implementation to improve the speed of this
algorithm, which is repeated many times in our optimal
genotype-elimination algorithm. We also showed that set
recoding can reduce the number of loop-breaker vectors
when there are untyped loop breakers. Also, we have
illustrated, in our pedigree with six loops, that many of
the loop-breaker vectors were inconsistent and have pre-
sented a recursive genotype-elimination algorithm to
eliminate the need to check these vectors. We also have
shown that the choice of loop breakers could have a
dramatic effect on the number of consistent loop-breaker
vectors, and we plan to further investigate algorithms
for choosing an optimal loop-breaker set in the context
of set recoding and our recursive loop breaker–
elimination algorithm.

Finally, we have presented an application of genotype
elimination to detection genotyping errors in pedigrees
and have shown, with a counterexample, that the orig-
inal Lange-Goradia algorithm can not detect every in-
consistency. However, our new genotype-elimination al-
gorithm is guaranteed to detect every Mendelian in-

1740 Am. J. Hum. Genet. 65:1733–1740, 1999

consistency efficiently and quickly. We have shown how
its implementation in PedCheck can assist the researcher
in identification of the possible sources of genotype
errors.

Software

Our new algorithms have been implemented into the
software packages PedCheck and VITESSE, which can
be obtained from our Division of Statistical Genetics
website.

Acknowledgments

Pedigree figures were generated with Pedigree/Draw version
4.4 (Southwest Foundation for Biomedical Research). We
thank Toby Nygaard for permission to use the pedigree from
Saudi Arabia. This work was supported, in part, by funds from
NIH grant HG00932, National Institute of Aging grant
AG16992-01, BIOMED European Community grant PL 96
2532, the Wellcome Trust Centre for Human Genetics at the
University of Oxford, the University of Pittsburgh, the W. M.
Keck Center for Advanced Training in Computational Biology
at the University of Pittsburgh, Carnegie Mellon University,
and the Pittsburgh Supercomputing Center.

Electronic-Database Information

The URL for data in this article is as follows:

Division of Statistical Genetics, Department of Human Ge-
netics, University of Pittsburgh, http://watson.hgen.pitt.edu
(for PedCheck and VITESSE software)

References

Becker A, Geiger D, Schaffer AA (1998) Automatic selection
of loop breakers for genetic linkage analysis. Hum Hered
48:49–60

Cottingham RW Jr, Idury RM, Schäffer AA (1993) Faster se-
quential genetic linkage computations. Am J Hum Genet 53:
252–263

Jones AC, Yamamura Y, Almasy L, Bohlega S, Elibol B, Hubble
J, Kuzuhara S, et al (1998) Autosomal recessive juvenile
parkinsonism maps to 6q25.2-q27 in four ethnic groups:
detailed genetic mapping of the linked region. Am J Hum
Genet 63:80–87

Lange K, Boehnke M (1983) Extensions to pedigree analysis.
V. Optimal calculation of Mendelian likelihoods. Hum
Hered 33:291–301

Lange K, Elston RC (1975) Extensions to pedigree analysis. I.
Likelihood calculations for simple and complex pedigrees.
Hum Hered 25:95–105

Lange K, Goradia TM (1987) An algorithm for automatic
genotype elimination. Am J Hum Genet 40:250–256

Lange K, Weeks DE (1989) Efficient computation of LOD
scores: genotype elimination, genotype redefinition, and hy-
brid maximum likelihood algorithms. Ann Hum Genet 53:
67–83

Lathrop GM, Lalouel JM (1988) Efficient computations in
multilocus linkage analysis. Am J Hum Genet 42:498–505

O’Connell JR, Weeks DE (1995) The VITESSE algorithm for
rapid exact multilocus linkage analysis via genotype set-re-
coding and fuzzy inheritance. Nat Genet 11:402–408

——— (1998) PedCheck: a program for identification of ge-
notype incompatibilities in linkage analysis. Am J Hum Ge-
net 63:259–266

Schäffer AA (1996) Faster linkage analysis computations for
pedigrees with loops or unused alleles. Hum Hered 46:
226–35

Sobel E, Lange K, O’Connell JR, Weeks DE (1995) Haplo-
typing algorithms. In: Speed TP, Waterman MS (eds) Genetic
mapping and DNA sequencing: IMA volumes in mathe-
matics and its applications. Springer-Verlag, New York

Xie X, Ott J (1992) Finding all loops in a pedigree. Am J Hum
Genet Suppl 51:A206

	An Optimal Algorithm for Automatic Genotype Elimination
	Summary
	Introduction
	An Optimal Genotype-Elimination Algorithm
	The Lange-Goradia Genotype-Elimination Algorithm
	Our Optimal Genotype-Elimination Algorithm
	Theorem:
	Illustration
	Complexity of the Algorithms
	Sequential Genotype Elimination
	The Sequential Genotype-Elimination Algorithm
	Recursive Genotype Elimination
	Recursive Loop-Breaker Elimination Algorithm
	Detecting Genotyping Errors

	Discussion
	Software
	Acknowledgments
	References

